В предлагаемом учебном пособии рассматриваются основы некоторых электрохимических технологий, а также критерии подбора применяемых в них материалов. Электрохимические методы широко используются в различных отраслях промышленности. Они имеют существенные преимущества перед химическими. Электрохимические способы полностью вытеснили химическое получение алюминия, магния, натрия, хлора, перекисных соединений и некоторых других.
Несомненными достоинствами электрохимического способа синтеза считаются высокая чистота продуктов, возможность применения более дешевого сырья и получение ценных побочных веществ. Недостатками являются большой расход электроэнергии и ограниченная скорость некоторых электрохимических процессов.
Ряд электрохимических технологий широко освещен в монографиях, учебниках и справочниках. В то же время учебные пособия по основным разделам прикладной электрохимии в последние 30 лет в нашей стране не издавались.
В пособии рассмотрены материалы и принципы создания электрохимических технологий, электролиз водных растворов и расплавов, анодная обработка материалов, электрохимический синтез ряда неорганических и органических веществ, основы гидроэлектрометаллургии и химические источники тока.
Пособие предназначено для студентов старших курсов бакалавриата и специалитета, обучающихся по направлениям подготовки 04.03.01 – Химия и 04.05.01 – Фундаментальная и прикладная химия.
Глава 1. Материалы и создание электрохимических технологий
Практическая реализация электролиза или генерирования электроэнергии проводится в электрохимических реакторах (ячейки, ванны, батареи, электрохимические станки и др.). Наиболее распространен реактор с плоскопараллельными, чередующимися катодами и анодами. Электроды одинаковой полярности включены параллельно [1–4].
Максимальная электрическая мощность единичной электрохимической ячейки и токовая нагрузка меняются в широких пределах. Соответственно и размеры электролизеров, вид и площадь поверхности электродов изменяются от микрона до нескольких метров.
Многие электрохимические процессы проводятся в концентрированных растворах кислот, щелочей или солей. Указанные электролиты обладают повышенной коррозионной активностью. В связи с этим материалы, из которых изготовлены электролизеры, должны обладать высокой коррозионной стойкостью. Для щелочных электролитов рекомендуется применять малолегированные стали, для кислых или концентрированных растворов солей – высоколегированные нержавеющие стали или полимерные конструкционные материалы. В качестве материала всё большее применение находит фторопласт [2–4].
Важное значение для электрохимических процессов имеет выбор конструкции и материала электродов. От данного выбора зависят не только технологические, экономические показатели производства (удельная затрата электроэнергии, селективность процесса, выход целевого продукта по току, чистота получаемых веществ), направление протекания процесса, но и затраты на организацию производства и ремонтные работы [2].
Каждое электрохимическое производство имеет свои индивидуальные характеристики, а также требования к условиям проведения, материалу, конструкции электродов и устройству самого электролизера.
Например, некоторые производства требуют минимального напряжения, поэтому материалы катода и анода должны иметь более низкое перенапряжение протекающих на электродах процессов. Если необходимы высокие значения электродных потенциалов, то подбирают такие материалы для катода и анода, чтобы перенапряжение выделения водорода и, соответственно, кислорода было максимально большим.
Свойствами материалов определяются не только кинетика протекающих процессов и энергетические показатели, но и конструктивные формы электродов и электролизера. При выборе электродных материалов учитывают их стойкость и стоимость.
В выборе материала катода обычно проблем не возникает. При электрохимическом получении хлора, хлорсодержащих продуктов, щелочи, водорода и кислорода на катоде протекает восстановление водорода. В большинстве случаев материалом для катода служит сталь, которая достаточно устойчива в применяемых электролитах. В сильно агрессивных кислых средах используют графитовые катоды. В некоторых случаях в электролит вводят добавки, образующие на катоде пленки и препятствующие восстановлению получаемых продуктов. Для уменьшения потенциала разряда водорода на катод наносят слой активного покрытия [1].
Наибольшие трудности возникают при выборе материала анода. Выбор анодных материалов ограничен высокой коррозионной активностью среды. Лучшими анодами являются аноды из платины или ее сплавов, но стоимость их высока. В хлорном производстве платиновые аноды были заменены на графитовые. Эти электроды достаточно быстро изнашиваются, их замена вызывает перерывы производственного цикла и требует дополнительные затраты.
Продукты коррозии электродов загрязняют электролит и получаемые продукты. В связи с этим к электродным материалам предъявляется и требование: они должны иметь малую скорость саморастворения и практически не растворяться при прекращении электролиза. Полностью нерастворимых анодов нет и каждый вид материала имеет свои границы устойчивости. Не допускается работа анодов в критических к ним условиям.