Матрицы. Определители и их свойства. Часть 1

Матрицы. Определители и их свойства. Часть 1
О книге

В этой книге рассматривается такие важные элементы линейной алгебры, как матрицы и определители. Операции над матрицами. Рассматриваются варианты решения типовых задач.

Читать Матрицы. Определители и их свойства. Часть 1 онлайн беплатно


Шрифт
Интервал

© Николай Петрович Морозов, 2024


ISBN 978-5-0064-5649-5 (т. 1)

ISBN 978-5-0064-5650-1

Создано в интеллектуальной издательской системе Ridero

Понятия об определителях и их основные свойствах.

Об операциях с матрицами..

Введение

Этой книгой я начинаю курс практических занятий по Линейной алгебре, которые я проводил со студентами университета культуры и искусств в городе Санкт – Петербурге. Параллельно с этим, на порталах «Инфоурок « и «Знание» появились и мои авторские материалы в виде статей, презентаций, рабочих программ и т. д. Одно из доказательств этого – СВИДЕТЕЛЬСТВО № ЯЙ 70400661 от 27.01.2022г. показано в Приложении.

1. Матрицы и операции над ними

Матрицами называются массивы элементов, представленные в виде прямоугольных таблиц, для которых определены правила математических действий.

Элементами матрицы могут являться числа, алгебраические символы или математические функции.

Матрицы широко используются для решения систем алгебраических и дифференциальных уравнений, шифрования сообщений в Интернете и т. д.

Таким образом, матрица обозначается одной из заглавных букв латинского алфавита, например A, а набор ее элементов помещается в круглые скобки:


Формула матрицы


Представленная формулой (1) матрица A имеет m строк и n столбцов и называется m×n матрицей или матрицей размера m×n.

Строки матрицы нумеруются сверху вниз, а столбцы – слева направо (см. рис.1):


Рис.1.


Матричный элемент, расположенный на пересечении i-ой строки и j-го столбца, называется i,j-м элементом и записывается в виде a>i j, а выражение A = || a>i j || означает, что матрица A составлена из элементов a>i j. (см. рис.2):


Рис.2.


Матрица (см. рис.2.) размера 1×n называется матрицей-строкой или вектором-строкой.


Рис.3.


Матрица (см. рис.3.) размера n×1 называется матрицей-столбцом или вектором-столбцом.

Для краткости вектор-строку и вектор-столбец обычно называют просто векторами.

Особую роль играют матрицы, у которых число строк совпадает с числом столбцов, то есть матрицы размера n×n. Такие матрицы называются квадратными (см. рис.4).


Рис.4.


При ссылке на квадратную матрицу достаточно указать ее порядок. Например, матрица третьего порядка имеет размер 3x3 (см. рис.5)


Рис.5.


Рис.6.


Рис.7.


Рис.8.


Единичную матрицу обозначают буквой E или I.


Рис.9.


Рис.10.

1.1.Равенство матриц

Матрицы A = || a>i j || и B = || a>i j || считаются равными, если они имеют одинаковые размеры и их соответствующие матричные элементы попарно равны:


для любых допустимых значений индексов i и j.

1.2. Умножение матрицы на число

Умножать на число можно матрицу любого размера. При умножении матрицы A на число λ каждый ее матричный элемент умножается на это число:


для любых допустимых значений индексов i и j.


В результате получим новую матрицу В.

В результате получим матрицу 3A.


Вынесение общего можителя за знак матрицы.

1.3.Сложение матриц

Операция сложения определена только для матриц одинаковых размеров. Результатом сложения матриц A = || a>i j || и B = || b>i j || является матрица C = || c>i j ||, элементы которой равны сумме соответствующих матричных элементов:


Формула операции сложения.


Результат сложения двух матриц.


Складывать (и вычитать) можно матрицы только одного размера!


Результат сложения двух матриц с учетом правила A +0 = A.

1.4.Вычитание матриц

Формула вычитания двух матриц.


1.5.Умножение строки на столбец

Пусть А = – матрица-строка размера 1×n, и пусть В – матрица-столбец размера n×1. (Иначе говоря, пусть число элементов в строке матрицы A совпадает с числом элементов в столбце матрицы B.)

Тогда произведением AB называется число, равное сумме попарных произведений соответствующих матричных элементов:


Формула является правилом умножения строки на столбец.


Если матрица A содержит m строк, а матрица B – n столбцов, то произведение AB представляет собой m×n матрицу, i,j-ый элемент которой вычисляется по правилу умножения i-ой строки матрицы A



Вам будет интересно