Предисловие
Вам предстоит знакомство с тем, как работает один из самых мощных инструментов цифрового века – большие языковые модели, такие как ChatGPT. Они умеют многое: от структурированной генерации текста до симуляции ролей, анализа и вывода. Однако, как и любой сложный инструмент, большие языковые модели особенно эффективны в умелых руках.
Эта книга – приглашение не просто к эксперименту, а к сотрудничеству. Вы узнаете, как правильно задавать вопросы, как использовать шаблоны (паттерны) взаимодействия и как формировать запросы так, чтобы получать точные и полезные ответы. Знание этих паттернов поможет вам не только решать повседневные задачи, но и открывать новые способы применения ИИ – в работе, обучении и творчестве.
Пусть это пособие станет для вас навигацией в мире, где текст – код взаимодействия, а каждый запрос – программа. Мой труд был задуман, чтобы помочь. Остальное – в ваших руках.
Глава 1.
Что такое большие языковые модели и как они работают
В этой главе мы не будем углубляться в технические детали, но расскажем достаточно, чтобы вы могли эффективно использовать языковые модели в своей работе. Особенно важно это при создании запросов, или, как их принято называть, промптов.
Что делает языковая модель?
Основное, что делает большая языковая модель, – получает ваш текстовый ввод и пытается предсказать следующее слово. Затем она добавляет это слово к исходному тексту и предсказывает следующее. И так – шаг за шагом – пока не сочтёт, что ответ завершён.
Можно представить это как постепенное формирование предложения: слово за словом, словно капля чернил за каплей вырисовывает фразу.
На практике всё гораздо сложнее, но суть именно такая: модель анализирует контекст и предсказывает наиболее вероятное следующее слово. Последнее слово в цепочке обычно означает «стоп», даже если визуально это не всегда заметно.
Пример работы
Допустим, мы вводим:
В лесу родилась…
Если вы знакомы с популярной новогодней песней, то логичное продолжение: ёлочка, в лесу она росла.
Модель сначала предскажет слово ёлочка, затем – следующее, и так далее, пока не сочтёт, что завершила предложение.
Другой пример:
Осенью в парке лежат…
Модель, скорее всего, продолжит: жёлтые листья, шуршащие под ногами.
Это не потому, что она знает поэзию или литературу. Она просто «помнит», какие фразы чаще всего следовали за такими строками в данных, на которых её обучали.
Как обучают модели?
Обучение происходит на огромных текстовых массивах, собранных из интернета. Алгоритм показывают часть текста и просят предсказать следующее слово. Если ответ неверен – происходит корректировка.
Так шаг за шагом модель учится находить паттерны, контексты, языковые зависимости и смысловые связи. Чем больше параметров у модели – тем точнее её предсказания.
Почему они называются «большими»? Потому что их обучают с помощью гигантских количеств данных, и они содержат миллиарды параметров. Это позволяет моделям эффективно обрабатывать текст, понимая не только отдельные слова, но и их отношения в длинных цепочках.
Например, фраза В лесу родилась могла бы продолжиться как странная история о медведе в костюме. Это технически корректно, но статистически маловероятно. Поэтому модель выберет вариант ёлочка, потому что он чаще встречался в обучающих данных.
Что важно знать о языковых моделях
Они не всегда дают одинаковый ответ. Один и тот же запрос может привести к слегка отличающимся результатам. Это заложено намеренно – элемент случайности делает поведение модели гибче.
Они не знают свежих событий. Например, ChatGPT-4 обучен на данных до 2021 года. Чтобы получить ответ по более свежей теме, необходимо включить контекст в сам запрос.
Они быстро развиваются. Помимо ChatGPT, существуют и другие модели: LLaMA, Alpaca, Vicuna и многие другие. Их возможности постоянно растут, и методы работы с ними – тоже.
Как использовать это знание
Понимание того, что модель – это «предсказатель следующего слова», помогает формулировать запросы эффективнее. Если вы дадите модели точную и последовательную формулировку, она с большей вероятностью двинется в нужном направлении.
Например, вместо:
Объясни, почему фильм плохой
лучше написать:
Опиши недостатки фильма, особенно связанные с сюжетом и актёрской игрой.
Также важно помнить: модель – не оракул. Она может ошибаться. Иногда её ответы бывают странными или лишёнными смысла. Поэтому важно относиться к ним критически и быть готовыми переформулировать запрос.
Непредсказуемость ответов языковых моделей
Большие языковые модели, по крайней мере в ближайшей перспективе, вряд ли будут давать вам точный и повторяющийся ответ каждый раз. Всегда будет вероятность того, что они сгенерируют что-то немного неожиданное – и это задумано специально, что в некоторых случаях может быть даже полезно.
Во многом работа с языковыми моделями заключается в том, чтобы управлять их непредсказуемостью. Нам нужно ограничивать её, направлять в нужное русло и использовать так, чтобы она приносила пользу.
Что это значит? Дело в том, что модели всегда имеют определённую долю случайности и могут генерировать новые и разные идеи при каждом запросе. Иногда это бывает полезно – например, при создании художественных текстов, когда нужны различные сюжетные линии, персонажи и неожиданные повороты. Каждый раз, запрашивая новый текст, мы получаем уникальный результат – и это замечательно.