Века сквозь математику, или Как математики раз за разом мир вертели

Века сквозь математику, или Как математики раз за разом мир вертели
О книге

Каждая книга возникает почему-то и зачем-то.Почему эта книга? Автор книги в течение 5 лет читала студентам математического факультета гуманитарный курс под названием "История математики в контексте истории культур". Ей нравилось. Студентам тоже.Зачем эта книга? Чтобы читателям тоже понравилось.Чтобы читатели заинтересовались математикой, заинтересовались историей, поняли, насколько же много исторических фактов никогда не приходитв голову историкам, увлеченным перестановкой на шахматной доске эпох фигурок королей, полководцев и президентов с их многочисленными армиями. Чтобы читатели поняли, что математика тоже влияет на ход истории. (Ну, собственно, как и физика, химия, компьютерные науки, а также любые другие науки вообще! Да наверняка, и история (наука) влияет на ход истории (времени) – но автор данной книги не возьмется этого утверждать, так как не является историком.)

Книга издана в 2024 году.

Читать Века сквозь математику, или Как математики раз за разом мир вертели онлайн беплатно


Шрифт
Интервал

Предисловие автора

В один прекрасный момент мне достался для прочтения курс лекций «История математики в контексте истории культур». Математик до мозга костей, я никогда не мыслила гуманитарными категориями, а уж тем более не читала гуманитарный курс. Математик с самого рождения и по сегодняшний день, я нуждаюсь в доказательстве всего и вся. Доказательства, принятые в классической истории, не всегда меня устраивают.

Для того, чтобы прилично прочитать курс /*а я думаю, мне это в итоге удалось*/ мне пришлось расширить сознание, перевернуть свое мышление вверх тормашками и приглушить внутренний голос, который постоянно из глубин подсознания нашептывает: «а почему именно так? а точно так, а не иначе?»

Итак, если вы тоже математик, я вам объясню, какова историческая основа моего курса. Мы, неспециалисты в истории, не задаемся вопросом: "А точно ли взятие Сиракуз, при котором умер Архимед, состоялось в 212 году до нашей эры? А как мы это датировали? А точны ли методы датировки?" Эти вопросы мы оставляем на откуп историкам-профессионалам. Если историки датируют папирус Ринда приблизительно 1650 годом до нашей эры, примем эту дату. /*В конце концов, позвольте профессионалам делать свое дело! Специализация – основа цивилизации.*/

Зачем вообще нужен на матфаке курс «История математики в контексте истории культур»? В этом курсе мы пытаемся проследить связь: как математика повлияла на историю и как наоборот история влияла на математику. Зачем? А затем, что математика способна изменить мир – и мы убедимся, что это не раз происходило уже в истории человечества.

Автор выражает глубокую признательность студентам, которые слушали курс, по мотивам которого возникла данная книжка. Невозможно передать то чувство, которое возникает у лектора, когда настроение в аудитории математиков и программистов от «История? Зачем нам вообще история?» меняется на «Вау! История – это интересно! А наши-то молодцы!» /*Спойлер: наши действительно молодцы! И "наши" – это, конечно же, математики.*/



Если честно, книг по истории математики опубликовано много: не одна, и даже не один десяток. А уж книг по истории… Чем же особенная эта? Я старалась сделать ее понятной среднему школьнику.

Наверное, зачастую, выкинув самую сердцевину математики, а оставив лишь истории про нее. И очень стремилась, чтобы книга вышла не занудной, не академической. Такой, какую приятно читать на ночь или в общественном транспорте. Наверное, это шло в ущерб точности и научности. Короче, я постараюсь просто рассказывать истории про историю и математику. И про то, как математика влияла на историю, а история на математику.

Вообще, оказывается, углубляться в историю математики – это очень-очень интересно, а порой – совершенно неожиданно. Вот, скажем, даже просто математическая генеалогия. Например, мой научный руководитель – Виталий Анатольевич Романьков. Его научный руководитель, а мой "научный дедушка" – Владимир Никанорович Ремесленников. Мой "научный пра-пра-пра-пра-дедушка" великий Павел Сергеевич Александров, а вот его "пра-пра-дедушка" – знаменитый Карл Вейерштрасс, научный внук самого Карла Гаусса, Короля математики. Таким образом, в моей прямой генеалогической научной линии встречаются все эти замечательные люди. Интересно? Мне кажется, очень1!

Клятвенно обещаю, что самое занудное в этой книге – данное предисловие.

А если вы нашли в книге опечатки, или хотите что-то обсудить, вы всегда можете прислать свои комментарии мне на электронную почту [email protected]. Я все обязательно прочитаю, постараюсь опечатки исправить, и на вопросы по существу ответить.

Лекция 1

.


Доисторические времена

Глава, в которой математика еще почти не появляется. Только чуть-чуть.



Что такое "доисторические времена"? Все очень просто. Это времена, когда люди еще не изобрели письменность. И таким образом, не могли сами записывать свои истории. А вот когда мы уже можем прочитать о том, что творилось (как в «Повести временных лет», например) – это, соответственно, исторические времена.

Примерно 3 тысячи лет назад письменность уже точно появилась2.

Но некоторые элементы математических знаний появились раньше письменности. Вот об этих-то ранних предпосылках возникновения математики мы и поговорим в этой главе.

Что за ранние математические знания нас интересуют? Во-первых, это числа. Во-вторых, это геометрические фигуры. В-третьих, это другие естественно-научные сведения (астрономические, например, которые способствуют возникновению и развитию прикладной математики). Ну, и в главных – абстрактное мышление. Для математики как ни для чего другого необходимо абстрактное мышление.

Счет возникает тогда, когда человек замечает, что между двумя баранами и двумя камушками есть что-то общее. А что общее? Это что-то – что-то очень неуловимое и, безусловно, абстрактное. Это число.

Геометрия возникает тогда, когда человек замечает, что между солнцем в небе и камнем на берегу моря есть что-то общее. Это что-то – снова что-то очень неуловимое – форма.

Математика возникает тогда, когда человек перестает думать про конкретные объекты, а начинает думать про что-то неуловимое.



Вам будет интересно